9129767 8MGFHE4Z 1 apa 50 date desc year Odlum, M. L. 18 https://maodlum.scrippsprofiles.ucsd.edu/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%222V3JA4GQ%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Senger%20et%20al.%22%2C%22parsedDate%22%3A%222024-12-16%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ESenger%2C%20K.%2C%20Shephard%2C%20G.%2C%20Ammerlaan%2C%20F.%2C%20Anfinson%2C%20O.%2C%20Audet%2C%20P.%2C%20Coakley%2C%20B.%2C%20Ershova%2C%20V.%2C%20Faleide%2C%20J.%20I.%2C%20Grundv%26%23xE5%3Bg%2C%20S.-A.%2C%20Horota%2C%20R.%20K.%2C%20Iyer%2C%20K.%2C%20Janocha%2C%20J.%2C%20Jones%2C%20M.%2C%20Minakov%2C%20A.%2C%20Odlum%2C%20M.%2C%20Sartell%2C%20A.%2C%20Schaeffer%2C%20A.%2C%20Stockli%2C%20D.%2C%20Vander%20Kloet%2C%20M.%20A.%2C%20%26amp%3B%20Gaina%2C%20C.%20%282024%29.%20Arctic%20Tectonics%20and%20Volcanism%3A%20a%20multi-scale%2C%20multi-disciplinary%20educational%20approach.%20%3Ci%3EGeoscience%20Communication%3C%5C%2Fi%3E%2C%20%3Ci%3E7%3C%5C%2Fi%3E%284%29%2C%20267%26%23x2013%3B295.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.5194%5C%2Fgc-7-267-2024%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.5194%5C%2Fgc-7-267-2024%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Arctic%20Tectonics%20and%20Volcanism%3A%20a%20multi-scale%2C%20multi-disciplinary%20educational%20approach%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kim%22%2C%22lastName%22%3A%22Senger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Grace%22%2C%22lastName%22%3A%22Shephard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fenna%22%2C%22lastName%22%3A%22Ammerlaan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Owen%22%2C%22lastName%22%3A%22Anfinson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pascal%22%2C%22lastName%22%3A%22Audet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bernard%22%2C%22lastName%22%3A%22Coakley%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Victoria%22%2C%22lastName%22%3A%22Ershova%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jan%20Inge%22%2C%22lastName%22%3A%22Faleide%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sten-Andreas%22%2C%22lastName%22%3A%22Grundv%5Cu00e5g%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rafael%20Kenji%22%2C%22lastName%22%3A%22Horota%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Karthik%22%2C%22lastName%22%3A%22Iyer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julian%22%2C%22lastName%22%3A%22Janocha%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Morgan%22%2C%22lastName%22%3A%22Jones%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%22%2C%22lastName%22%3A%22Minakov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Margaret%22%2C%22lastName%22%3A%22Odlum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anna%22%2C%22lastName%22%3A%22Sartell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%22%2C%22lastName%22%3A%22Schaeffer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%22%2C%22lastName%22%3A%22Stockli%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marie%20Annette%22%2C%22lastName%22%3A%22Vander%20Kloet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carmen%22%2C%22lastName%22%3A%22Gaina%22%7D%5D%2C%22abstractNote%22%3A%22Abstract.%20Geologically%2C%20the%20Arctic%20is%20one%20of%20the%20least-explored%20regions%20of%20Earth.%20Obtaining%20data%20in%20the%20high%20Arctic%20is%20logistically%2C%20economically%2C%20and%20environmentally%20expensive%2C%20but%20the%20township%20of%20Longyearbyen%20%28population%20of%202617%20as%20of%202024%29%20at%2078%5Cu00b0%5Cu2009N%20represents%20a%20relatively%20easily%20accessible%20gateway%20to%20Arctic%20geology%20and%20is%20home%20to%20The%20University%20Centre%20in%20Svalbard%20%28UNIS%29.%20These%20unique%20factors%20provide%20a%20foundation%20from%20which%20to%20teach%20and%20explore%20Arctic%20geology%20via%20the%20classroom%2C%20the%20laboratory%2C%20and%20the%20field.%20UNIS%20was%20founded%20in%201993%20as%20the%20Norwegian%20%5Cu201cfield%20university%5Cu201d%2C%20offering%20field-based%20courses%20in%20Arctic%20geology%2C%20geophysics%2C%20biology%2C%20and%20technology%20to%20students%20from%20Norway%20and%20abroad.%20In%20this%20contribution%2C%20we%20present%20one%20of%20the%20educational%20components%20of%20the%20international%20collaboration%20project%20NOR-R-AM%20%28a%20Norwegian-Russian-North%20American%20collaboration%20in%20Arctic%20research%20and%20collaboration%2C%20titled%20Changes%20at%20the%20Top%20of%20the%20World%20through%20Volcanism%20and%20Plate%20Tectonics%29%20which%20ran%20from%202017%20to%202024.%20One%20of%20the%20key%20deliverables%20of%20NOR-R-AM%20was%20a%20new%20graduate%20%28Master%27s%20and%20PhD-level%29%20course%20called%20Arctic%20Tectonics%20and%20Volcanism%20that%20we%20have%20established%20and%20taught%20annually%20at%20UNIS%20since%202018%20and%20detail%20herein.%20The%20course%27s%20main%20objective%20is%20to%20teach%20the%20complex%20geological%20evolution%20of%20the%20Arctic%20from%20the%20Devonian%20period%20%28%5Cu223c%5Cu2009420%5Cu00a0million%20years%20ago%2C%20Ma%29%20to%20the%20present%20day%20through%20integrating%20multi-scale%20datasets%20and%20a%20broad%20range%20of%20geoscientific%20disciplines.%20We%20outline%20the%20course%20itself%20before%20presenting%20student%20perspectives%20based%20on%20both%20an%20anonymous%20questionnaire%20%28n%3D27%29%20and%20in-depth%20perceptions%20of%20four%20selected%20students.%20The%20course%2C%20with%20an%20annual%20intake%20of%20up%20to%2020%5Cu2009MSc%20and%20PhD%20students%2C%20is%20held%20over%20a%206-week%20period%2C%20typically%20in%20spring%20or%20autumn.%20The%20course%20comprises%20modules%20on%20field%20and%20polar%20safety%2C%20Svalbard%5C%2FBarents%20Sea%20geology%2C%20wider%20Arctic%20geology%2C%20plate%20tectonics%2C%20mantle%20dynamics%2C%20geo-%20and%20thermochronology%2C%20and%20geochemistry%20of%20igneous%20systems.%20A%20field%20component%2C%20which%20in%20some%20years%20included%20an%20overnight%20expedition%2C%20provides%20an%20opportunity%20to%20appreciate%20Arctic%20geology%20and%20gather%20field%20observations%20and%20data.%20Digital%20outcrop%20models%2C%20photospheres%2C%20and%20tectonic%20plate%20reconstructions%20provide%20complementary%20state-of-the-art%20data%20visualization%20tools%20in%20the%20classroom%20and%20facilitate%20efficient%20fieldwork%20through%20pre-fieldwork%20preparation%20and%20post-fieldwork%20quantitative%20analyses.%20The%20course%20assessment%20is%20centred%20around%20an%20individual%20research%20project%20that%20is%20presented%20orally%20and%20in%20a%20short%20and%20impactful%20Geology%20journal-style%20article.%20Considering%20the%20complex%20subject%20and%20the%20diversity%20of%20students%27%20backgrounds%20and%20level%20of%20geological%20knowledge%20before%20the%20course%2C%20the%20student%20experiences%20during%20this%20course%20demonstrate%20that%20the%20multi-disciplinary%2C%20multi-lecturer%20field-and-classroom%20teaching%20is%20efficient%20and%20increases%20their%20motivation%20to%20explore%20Arctic%20science.%22%2C%22date%22%3A%222024-12-16%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.5194%5C%2Fgc-7-267-2024%22%2C%22ISSN%22%3A%222569-7110%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fgc.copernicus.org%5C%2Farticles%5C%2F7%5C%2F267%5C%2F2024%5C%2F%22%2C%22collections%22%3A%5B%228MGFHE4Z%22%5D%2C%22dateModified%22%3A%222024-12-23T19%3A12%3A24Z%22%7D%7D%2C%7B%22key%22%3A%225339SD9L%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Odlum%20et%20al.%22%2C%22parsedDate%22%3A%222024-02-21%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EOdlum%2C%20M.%20L.%3C%5C%2Fstrong%3E%2C%20Capaldi%2C%20T.%20N.%2C%20Thomson%2C%20K.%20D.%2C%20%26amp%3B%20Stockli%2C%20D.%20F.%20%282024%29.%20Tracking%20cycles%20of%20Phanerozoic%20opening%20and%20closing%20of%20ocean%20basins%20using%20detrital%20rutile%20and%20zircon%20geochronology%20and%20geochemistry.%20%3Ci%3EGeology%3C%5C%2Fi%3E.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1130%5C%2FG51826.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1130%5C%2FG51826.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Tracking%20cycles%20of%20Phanerozoic%20opening%20and%20closing%20of%20ocean%20basins%20using%20detrital%20rutile%20and%20zircon%20geochronology%20and%20geochemistry%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Margaret%20L.%22%2C%22lastName%22%3A%22Odlum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tomas%20N.%22%2C%22lastName%22%3A%22Capaldi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kelly%20D.%22%2C%22lastName%22%3A%22Thomson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%20F.%22%2C%22lastName%22%3A%22Stockli%22%7D%5D%2C%22abstractNote%22%3A%22Sedimentary%20basins%20provide%20a%20deep%20time%20archive%20of%20tectonic%20and%20Earth-surface%20processes%20that%20can%20be%20leveraged%20by%20detrital%20mineral%20U-Pb%20dating%20and%20geochemistry%20to%20track%20paleogeography%2C%20magmatism%2C%20and%20crustal%20evolution.%20Zircon%20preserves%20the%20long-term%20%28billions%20of%20years%29%20record%20of%20supercontinent%20cycles%3B%20however%2C%20it%20is%20biased%20toward%20preserving%20felsic%20crustal%20records.%20Detrital%20rutile%20complements%20the%20detrital%20zircon%20record%20by%20providing%20constraints%20on%20the%20time%20and%20temperature%20of%20rifting%20and%20mafic%20magmatism%2C%20metamorphism%2C%20exhumation%20of%20the%20middle%20and%20lower%20crust%2C%20subduction%2C%20and%20amagmatic%20orogenesis.%20We%20use%20detrital%20zircon%20U-Pb%20and%20detrital%20rutile%20U-Pb%20geochronology%20and%20trace%20element%20analysis%20of%20Permian%20to%20Eocene%20siliciclastic%20rocks%20in%20the%20southern%20Pyrenees%20to%20capture%20supercontinent%20cycles%20of%20ocean%20basins%20opening%20and%20closing.%20Detrital%20rutile%20age%20spectra%20show%20peaks%20at%20ca.%20100%20Ma%20associated%20with%20rifting%20and%20hyperextension%20in%20the%20Pyrenean%20realm%2C%20200%20Ma%20associated%20with%20the%20Central%20Atlantic%20Magmatic%20Province%2C%20and%20330%20Ma%2C%20375%20Ma%2C%20and%20400%20Ma%20associated%20with%20subduction%20and%20Rheic%20Ocean%20crust%20formation.%20Zr-in-rutile%20thermometry%20and%20rutile%20Cr-Nb%20systematics%20provide%20further%20insight%20into%20metamorphic%20facies%20%28peak%20metamorphic%20temperatures%29%20and%20source%20rock%20lithology%20%28mafic%20versus%20felsic%20affinity%29.%20Detrital%20zircon%20age%20spectra%20have%20peaks%20at%20ca.%20300%20Ma%2C%20450%20Ma%2C%20and%20600%20Ma%20associated%20with%20major%20orogenic%20events%20and%20felsic%20magmatism%2C%20and%20Th%5C%2FU%20ratios%20provide%20information%20on%20relative%20zircon%20formation%20temperatures.%20Comparison%20of%20these%20independent%20records%20shows%20that%20detrital%20rutile%20reflects%20rifting%2C%20magma-poor%20orogenesis%2C%20and%20oceanic%20lithospheric%20processes%2C%20while%20detrital%20zircon%20detects%20continental%20lithospheric%20processes.%20Integrated%20detrital%20zircon%20and%20rutile%20data%20sets%20archive%20past%20geological%20events%20across%20multiple%20Wilson%20cycles.%22%2C%22date%22%3A%222024-02-21%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1130%5C%2FG51826.1%22%2C%22ISSN%22%3A%220091-7613%2C%201943-2682%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.geoscienceworld.org%5C%2Fgeology%5C%2Farticle%5C%2Fdoi%5C%2F10.1130%5C%2FG51826.1%5C%2F635318%5C%2FTracking-cycles-of-Phanerozoic-opening-and-closing%22%2C%22collections%22%3A%5B%22BGC9F53I%22%2C%228MGFHE4Z%22%5D%2C%22dateModified%22%3A%222024-02-23T23%3A15%3A37Z%22%7D%7D%2C%7B%22key%22%3A%22PXMQFEEJ%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zuza%20et%20al.%22%2C%22parsedDate%22%3A%222024%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EZuza%2C%20A.%20V.%2C%20Cao%2C%20W.%2C%20Levy%2C%20D.%20A.%2C%20DesOrmeau%2C%20J.%20W.%2C%20%3Cstrong%3EOdlum%2C%20M.%20L.%3C%5C%2Fstrong%3E%2C%20%26amp%3B%20Siciliano%2C%20A.%20A.%20%282024%29.%20Kinematic%20vorticity%20of%20shear%20zones%20that%20accommodate%20vertical%20crustal%20advection%3A%20Implications%20for%20metamorphic%20core%20complexes%20and%20pluton%20emplacement.%20%3Ci%3EEarth%20and%20Planetary%20Science%20Letters%3C%5C%2Fi%3E%2C%20%3Ci%3E646%3C%5C%2Fi%3E%2C%20118964.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.epsl.2024.118964%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.epsl.2024.118964%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Kinematic%20vorticity%20of%20shear%20zones%20that%20accommodate%20vertical%20crustal%20advection%3A%20Implications%20for%20metamorphic%20core%20complexes%20and%20pluton%20emplacement%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20V.%22%2C%22lastName%22%3A%22Zuza%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wenrong%22%2C%22lastName%22%3A%22Cao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Drew%20A.%22%2C%22lastName%22%3A%22Levy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Joel%20W.%22%2C%22lastName%22%3A%22DesOrmeau%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Margaret%20L.%22%2C%22lastName%22%3A%22Odlum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20A.%22%2C%22lastName%22%3A%22Siciliano%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2211%5C%2F2024%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.epsl.2024.118964%22%2C%22ISSN%22%3A%220012821X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0012821X24003972%22%2C%22collections%22%3A%5B%228MGFHE4Z%22%5D%2C%22dateModified%22%3A%222024-10-11T22%3A53%3A44Z%22%7D%7D%2C%7B%22key%22%3A%22BWBMHIUE%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Plonka%20et%20al.%22%2C%22parsedDate%22%3A%222023-09%22%2C%22numChildren%22%3A2%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EPlonka%2C%20Z.%20C.%2C%20Capaldi%2C%20T.%20N.%2C%20%3Cstrong%3EOdlum%2C%20M.%20L.%3C%5C%2Fstrong%3E%2C%20Mackaman-Lofland%2C%20C.%2C%20Ortiz%2C%20G.%2C%20%26amp%3B%20Alvarado%2C%20P.%20%282023%29.%20Along-strike%20tectonic%20evolution%20of%20the%20Neogene%20Bermejo%20foreland%20basin%20and%20Eastern%20Precordillera%20thrust%20front%2C%20Argentina%20%2830-32%26%23xB0%3BS%29.%20%3Ci%3EJournal%20of%20South%20American%20Earth%20Sciences%3C%5C%2Fi%3E%2C%20%3Ci%3E129%3C%5C%2Fi%3E.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.jsames.2023.104521%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.jsames.2023.104521%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Along-strike%20tectonic%20evolution%20of%20the%20Neogene%20Bermejo%20foreland%20basin%20and%20Eastern%20Precordillera%20thrust%20front%2C%20Argentina%20%2830-32%5Cu00b0S%29%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Z.%20C.%22%2C%22lastName%22%3A%22Plonka%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%20N.%22%2C%22lastName%22%3A%22Capaldi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20L.%22%2C%22lastName%22%3A%22Odlum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Mackaman-Lofland%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Ortiz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Alvarado%22%7D%5D%2C%22abstractNote%22%3A%22The%20Bermejo%20retroarc%20foreland%20basin%20system%20formed%20in%20flexural%20response%20to%20Cenozoic%20crustal%20thickening%20in%20the%20Andean%20orogenic%20system%2C%20specifically%2C%20the%20eastward%20propagation%20of%20the%20Precordillera%20fold-thrust%20belt%20and%20the%20basement-involved%20uplift%20of%20the%20Sierras%20Pampeanas.%20Previous%20work%20in%20the%20region%20has%20mainly%20focused%20on%20the%20mechanisms%20and%20expression%20of%20flat%20slab%20subduction%20and%20the%20structural%20geometry%20of%20the%20basement-involved%20Sierras%20Pampeanas%20and%20east-directed%20Precordillera%20fold-thrust%20belt%20at%20depth%2C%20advancing%20our%20understanding%20of%20the%20Bermejo%20basin%20history%20north%20of%2031%20%26%20DEG%3BS.%20However%2C%20the%20along%20strike%20evolution%20of%20the%20basin%20system%20to%20the%20south%20remains%20unresolved%20and%20contrasting%20tectonic%20models%20have%20proposed%20the%20Bermejo%20basin%20evolved%20synchronously%20versus%20asynchronously%20through%20time.%20Our%20study%20seeks%20to%20constrain%20the%20along-strike%20Neogene%20tectonics%20of%20the%20Bermejo%20basin%20via%20well-exposed%20Miocene%20fluvial%20stratigraphic%20intervals%20along%20the%20Eastern%20Precordillera%2C%20integrated%20with%20detrital%20zircon%20U-Pb%20geochronology%20provenance%20and%20detrital%20apatite%20%28U-Th%29%5C%2FHe%20thermochronology%20datasets.%20New%20data%20from%20two%20Neogene%20stratigraphic%20sections%20in%20the%20southern%20Bermejo%20basin%20constrain%20deposition%20between%2013%20and%206%20Ma.%20Dominant%20fluvial-lacustrine%20mudstones%2C%20siltstones%2C%20and%20sandstones%20transition%20into%20fluvial-megafan%20deposits%20capped%20by%20alluvial%20fan%20conglomerate%20facies%2C%20tracking%20the%20eastward%20migration%20of%20Precordillera%20deformation.%20The%20cessation%20of%20sedimentation%2C%20and%20thermal%20history%20models%20of%20apatite%20%28U-Th-Sm%29%5C%2FHe%20thermochronology%20ages%2C%20indicates%20basin%20incorporation%20into%20the%20orogenic%20wedge%20by%206%20Ma.%20When%20we%20compare%20our%20southern%20datasets%20with%20previous%20constraints%20from%20the%20northern%20Bermejo%20basin%2C%20we%20observe%2C%20from%20north%20to%20south%3A%20%281%29%20a%20time-transgressive%20trend%20in%20basin%20initiation%2C%20%282%29%20a%20-3%20km%20decrease%20in%20stratigraphic%20thicknesses%2C%20and%20%283%29%20older%20exhumation%20along%20the%20thrust%20front.%20These%20trends%20highlight%20the%20asynchronous%20nature%20of%20the%20Bermejo%20foreland%20basin%20system%20and%20alongstrike%20variability%20of%20Precordillera%20thrust-front%20evolution.%22%2C%22date%22%3A%22Sep%202023%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.jsames.2023.104521%22%2C%22ISSN%22%3A%220895-9811%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22BGC9F53I%22%2C%228MGFHE4Z%22%5D%2C%22dateModified%22%3A%222024-03-14T18%3A53%3A25Z%22%7D%7D%2C%7B%22key%22%3A%228K8XT4XZ%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Capaldi%20et%20al.%22%2C%22parsedDate%22%3A%222022-10%22%2C%22numChildren%22%3A2%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ECapaldi%2C%20T.%20N.%2C%20%3Cstrong%3EOdlum%2C%20M.%20L.%3C%5C%2Fstrong%3E%2C%20Curry%2C%20M.%20E.%2C%20%26amp%3B%20Stockli%2C%20D.%20F.%20%282022%29.%20Variable%20thermal%20histories%20across%20the%20Pyrenees%20orogen%20recorded%20in%20modern%20river%20sand%20detrital%20geo-%5C%2Fthermochronology%20and%20PECUBE%20thermokinematic%20modelling.%20%3Ci%3EBasin%20Research%3C%5C%2Fi%3E%2C%20%3Ci%3E34%3C%5C%2Fi%3E%285%29%2C%201781%26%23x2013%3B1806.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1111%5C%2Fbre.12685%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1111%5C%2Fbre.12685%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Variable%20thermal%20histories%20across%20the%20Pyrenees%20orogen%20recorded%20in%20modern%20river%20sand%20detrital%20geo-%5C%2Fthermochronology%20and%20PECUBE%20thermokinematic%20modelling%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%20N.%22%2C%22lastName%22%3A%22Capaldi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20L.%22%2C%22lastName%22%3A%22Odlum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20E.%22%2C%22lastName%22%3A%22Curry%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%20F.%22%2C%22lastName%22%3A%22Stockli%22%7D%5D%2C%22abstractNote%22%3A%22The%20Pyrenees%20Mountains%20are%20a%20classic%20example%20of%20a%20doubly-verging%20collisional%20orogenic%20system%20with%20flanking%20retro-%20and%20pro-foreland%20basin%20systems.%20Previous%20bedrock%20and%20detrital%20geo-%5C%2Fthermochronologic%20studies%20have%20observed%20magmatic%20and%20exhumation-related%20ages%20that%20reflect%20a%20complex%20thermo-tectonic%20evolution%20of%20the%20European%20and%20Iberian%20plate%20margins%20related%20to%20break-up%20and%20assembly%20of%20the%20Gondwana%2C%20Pangea%20and%20Pyrenean-Alpine%20orogenic%20cycles.%20This%20study%20integrates%20detrital%20zircon%2C%20rutile%20and%20apatite%20U-Pb%20dating%20and%2C%20detrital%20zircon%20and%20apatite%20%28U-Th%29%5C%2FHe%20dating%20from%20modern%20river%20sands%20from%20the%20northern%20and%20southern%20Pyrenees%2C%20with%20PECUBE%20thermokinematic%20modelling%20of%20bedrock%20cooling%20ages%20to%20simulate%20detrital%20age%20distributions%20in%20order%20to%20evaluate%3A%20%281%29%20regional%20patterns%20in%20long-term%20crustal%20processes%20associated%20with%20pre-Pyrenean%20crustal%20shortening%2C%20crustal%20thinning%20and%20magmatism%20along%20the%20Iberian%20and%20European%20plate%20margin%3B%20%282%29%20timing%20of%20regional%20cooling%20and%20inferred%20erosion%20related%20to%20Pyrenean%20orogenesis%3B%20and%20%283%29%20the%20exhumation%20processes%20associated%20with%20post-orogenic%20decay%20and%20erosion.%20Modern%20river%20multimineral%20detrital%20geo-%5C%2Fthermochronometry%20results%20are%20consistent%20with%20previous%20bedrock%20thermal%20history%20models%20and%20records%20punctuated%20Variscan%20and%20Pyrenean%20cooling%20events%20in%20the%20pro-wedge%20that%20contrasts%20with%20protracted%20Permian%20to%20Pliocene%20thermal%20history%20preserved%20in%20the%20retro-wedge%20of%20the%20orogen.%20Detrital%20age%20distributions%20from%20PECUBE%20modelling%20predict%20the%20Pyrenean%20age%20component%20in%20both%20detrital%20apatite%20and%20zircon%20%28U-Th%29%5C%2FHe%20age%20distributions%2C%20indicating%20the%20modelled%20exhumation%20patterns%20in%20the%20Axial%20Zone%20and%20Northern%20Pyrenean%20Zone%20can%20predict%20observed%20Pyrenean%20thermochronology%20ages.%20The%20presence%20of%20strong%20Pyrenean%20age%20peaks%20amongst%20the%20modern%20river%20sand%20and%20modelled%20detrital%20cooling%20age%20distributions%20suggests%20retro-wedge%20deformation%20and%20exhumation%20remained%20active%20during%20the%20main%20phase%20of%20pro-wedge%20activity%20and%20experienced%20significant%20orogenic%20decay.%20Isolated%20Miocene%20apatite%20He%20ages%20from%20the%20North%20Pyrenees%20modern%20river%20record%20post-orogenic%20cooling%2C%20due%20to%20tectonic%20mode%20switch%20to%20extension%20and%20%28or%29%20climate-driven%20enhanced%20exhumation.%22%2C%22date%22%3A%22Oct%202022%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1111%5C%2Fbre.12685%22%2C%22ISSN%22%3A%220950-091x%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22BGC9F53I%22%2C%228MGFHE4Z%22%5D%2C%22dateModified%22%3A%222024-03-14T18%3A29%3A30Z%22%7D%7D%2C%7B%22key%22%3A%22SVNY8YE4%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Odlum%20et%20al.%22%2C%22parsedDate%22%3A%222022-06-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EOdlum%2C%20M.%20L.%3C%5C%2Fstrong%3E%2C%20Levy%2C%20D.%20A.%2C%20Stockli%2C%20D.%20F.%2C%20Stockli%2C%20L.%20D.%2C%20%26amp%3B%20DesOrmeau%2C%20J.%20W.%20%282022%29.%20Deformation%20and%20metasomatism%20recorded%20by%20single-grain%20apatite%20petrochronology.%20%3Ci%3EGeology%3C%5C%2Fi%3E%2C%20%3Ci%3E50%3C%5C%2Fi%3E%286%29%2C%20697%26%23x2013%3B703.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1130%5C%2FG49809.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1130%5C%2FG49809.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Deformation%20and%20metasomatism%20recorded%20by%20single-grain%20apatite%20petrochronology%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Margaret%20L.%22%2C%22lastName%22%3A%22Odlum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Drew%20A.%22%2C%22lastName%22%3A%22Levy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%20F.%22%2C%22lastName%22%3A%22Stockli%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lisa%20D.%22%2C%22lastName%22%3A%22Stockli%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Joel%20W.%22%2C%22lastName%22%3A%22DesOrmeau%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20timing%20and%20processes%20of%20ductile%20deformation%20and%20metasomatism%20can%20be%20documented%20using%20apatite%20petrochronology.%20We%20integrated%20microstructural%2C%20U-Pb%2C%20and%20geochemical%20analyses%20of%20apatite%20grains%20from%20an%20exhumed%20mylonitic%20shear%20zone%20in%20the%20St.%20Barth%5Cu00e9l%5Cu00e9my%20Massif%2C%20Pyrenees%2C%20France%2C%20to%20understand%20how%20deformation%20and%20metasomatism%20are%20recorded%20by%20U-Pb%20dates%20and%20geochemical%20patterns.%20Electron%20backscatter%20diffraction%20%28EBSD%29%20analyses%20documents%20crystal%20plastic%20deformation%20characterized%20by%20low-angle%20boundaries%20%28%26lt%3B5%5Cu00b0%29%20associated%20with%20dislocation%20creep%20and%20evidence%20of%20multiple%20slip%20systems.%20Laser%20ablation%5Cu2013inductively%20coupled%20plasma%5Cu2013mass%20spectrometry%20%28LA-ICP-MS%29%20U-Pb%20maps%20indicate%20that%20dates%20in%20deformed%20grains%20reflect%2C%20and%20are%20governed%20by%2C%20low-angle%20dislocation%20boundaries.%20Apatite%20rare%20earth%20element%20%28REE%29%20and%20U-Pb%20behavior%20is%20decoupled%20in%20high-grade%20gneiss%20samples%2C%20suggesting%20REEs%20record%20higher-temperature%20processes%20than%20U-Pb%20isotopic%20systems.%20Apatite%20from%20%28ultra%29mylonitic%20portions%20of%20the%20shear%20zone%20showed%20evidence%20of%20metasomatism%2C%20and%20the%20youngest%20dates%20constrain%20the%20age%20of%20metasomatism.%20Collectively%2C%20these%20results%20demonstrate%20that%20crystal%20plastic%20microstructures%20and%20fluid%20interactions%20can%20markedly%20change%20apatite%20isotopic%20signatures%2C%20making%20single-grain%20apatite%20petrochronology%20a%20powerful%20tool%20for%20dating%20and%20characterizing%20the%20latest%20major%20deformation%20and%5C%2For%20fluid%20events%2C%20which%20are%20often%20not%20captured%20by%20higher-temperature%20chronometers.%22%2C%22date%22%3A%222022-06-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1130%5C%2FG49809.1%22%2C%22ISSN%22%3A%220091-7613%2C%201943-2682%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.geoscienceworld.org%5C%2Fgeology%5C%2Farticle%5C%2F50%5C%2F6%5C%2F697%5C%2F612783%5C%2FDeformation-and-metasomatism-recorded-by-single%22%2C%22collections%22%3A%5B%228MGFHE4Z%22%5D%2C%22dateModified%22%3A%222024-03-14T18%3A06%3A18Z%22%7D%7D%2C%7B%22key%22%3A%22UTFMKIZR%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Anfinson%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EAnfinson%2C%20O.%20A.%2C%20%3Cstrong%3EOdlum%2C%20M.%20L.%3C%5C%2Fstrong%3E%2C%20Piepjohn%2C%20K.%2C%20Poulaki%2C%20E.%20M.%2C%20Shephard%2C%20G.%20E.%2C%20Stockli%2C%20D.%20F.%2C%20Levang%2C%20D.%2C%20Jensen%2C%20M.%20A.%2C%20%26amp%3B%20Pavlovskaia%2C%20E.%20A.%20%282022%29.%20Provenance%20Analysis%20of%20the%20Andr%26%23xE9%3Be%20Land%20Basin%20and%20Implications%20for%20the%20Paleogeography%20of%20Svalbard%20in%20the%20Devonian.%20%3Ci%3ETectonics%3C%5C%2Fi%3E%2C%20%3Ci%3E41%3C%5C%2Fi%3E%2811%29%2C%20e2021TC007103.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2021TC007103%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2021TC007103%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Provenance%20Analysis%20of%20the%20Andr%5Cu00e9e%20Land%20Basin%20and%20Implications%20for%20the%20Paleogeography%20of%20Svalbard%20in%20the%20Devonian%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Owen%20A.%22%2C%22lastName%22%3A%22Anfinson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Margo%20L.%22%2C%22lastName%22%3A%22Odlum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Karsten%22%2C%22lastName%22%3A%22Piepjohn%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eirini%20M.%22%2C%22lastName%22%3A%22Poulaki%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Grace%20E.%22%2C%22lastName%22%3A%22Shephard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%20F.%22%2C%22lastName%22%3A%22Stockli%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Devin%22%2C%22lastName%22%3A%22Levang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Maria%20A.%22%2C%22lastName%22%3A%22Jensen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Elena%20A.%22%2C%22lastName%22%3A%22Pavlovskaia%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20During%20the%20Devonian%2C%20the%20Svalbard%20Archipelago%20lay%20at%20low%20latitudes%2C%20occupying%20a%20paleogeographic%20position%20at%20the%20intersection%20of%20Caledonian%20and%20Ellesmerian%20orogens.%20Provenance%20analysis%2C%20including%20detrital%20zircon%20U%5Cu2010Pb%20age%20studies%2C%20of%20Devonian%20%28ca.%20420%5Cu2013360%5Cu00a0Ma%29%20strata%20from%20the%20Andr%5Cu00e9e%20Land%20Basin%2C%20Svalbard%2C%20help%20reconstruct%20sediment%20sources%20to%20understand%20the%20assembly%20of%20the%20three%20basement%20provinces%20that%20make%20up%20Svalbard%2C%20which%20are%20presently%20separated%20by%20Devonian%20sedimentary%20basins%20and%28or%29%20faults%20with%20syn%5Cu2010to%20post%5Cu2010Devonian%20displacement.%20The%20studied%20Andr%5Cu00e9e%20Land%20Group%20strata%2C%20which%20are%20part%20of%20the%20North%20Atlantic%27s%20Old%20Red%20Sandstone%2C%20consist%20of%20the%20Early%20Devonian%20Wood%20Bay%20Formation%20and%20Middle%20to%20Late%20Devonian%20Mimerdalen%20subgroup.%20Paleocurrent%20indicators%20from%20Lower%20to%20lower%5Cu2010Middle%20Devonian%20strata%20record%20north%5Cu2010directed%20sediment%20transport.%20Detrital%20zircon%20U%5Cu2010Pb%20ages%20indicate%20a%20prominent%20%5Cu201cCaledonian%5Cu201d%20signal%20and%20include%20sources%20from%20Svalbard%27s%20Northwestern%20and%28or%29%20Southwestern%20basement%20provinces.%20In%20Middle%20and%20Upper%20Devonian%20strata%2C%20paleocurrents%20and%20detrital%20zircon%20ages%20record%20a%20shift%20to%20a%20predominantly%20eastern%5Cu2010northeastern%20provenance%2C%20likely%20from%20the%20uplifting%20Ny%5Cu2010Friesland%20block%20along%20the%20Billefjorden%20Fault%20Zone.%20Late%20Ediacaran%5Cu2010early%20Cambrian%20detrital%20zircons%20in%20the%20uppermost%20Planteryggen%20Formation%20%28Frasnian%29%20indicate%20extrabasinal%20sources%20possibly%20associated%20with%20the%20Timanian%20orogen%20of%20Northern%20Baltica.%20The%20combined%20provenance%20data%20suggest%20Svalbard%20may%20have%20already%20been%20assembled%2C%20similar%20to%20the%20modern%20block%2C%20with%20the%20Andr%5Cu00e9e%20Land%20Basin%20located%20between%20modern%20exposures%20of%20the%20Southwestern%5C%2FNorthwestern%20and%20the%20Northeastern%20basement%20provinces.%20Comparison%20of%20detrital%20zircon%20ages%20from%20Andr%5Cu00e9e%20Land%20Group%20strata%20with%20those%20from%20other%20circum%20Arctic%20Devonian%20strata%20provides%20constraints%20on%20Svalbard%27s%20paleogeographic%20position%20in%20the%20Devonian.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Provenance%20analysis%20of%20the%20Andr%5Cu00e9e%20Land%20Basin%20identifies%20N%5Cu2010NE%20paleodrainage%20in%20the%20Early%20Devonian%20and%20W%5Cu2010SW%20in%20the%20Middle%5Cu2010Late%20Devonian%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Svalbard%27s%20three%20basement%20provinces%20were%20likely%20juxtaposed%20into%20a%20relative%20position%20similar%20to%20the%20present%20day%20by%20the%20end%20of%20the%20Devonian%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Detrital%20zircon%20U%5Cu2010Pb%20age%20comparisons%20of%20circum%20Arctic%20Devonian%20strata%20further%20constrain%20Svalbard%27s%20paleogeographic%20position%20in%20the%20Devonian%22%2C%22date%22%3A%2211%5C%2F2022%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2021TC007103%22%2C%22ISSN%22%3A%220278-7407%2C%201944-9194%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2021TC007103%22%2C%22collections%22%3A%5B%228MGFHE4Z%22%5D%2C%22dateModified%22%3A%222024-03-14T18%3A05%3A51Z%22%7D%7D%2C%7B%22key%22%3A%22SGH8I7JL%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Odlum%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EOdlum%2C%20M.%20L.%3C%5C%2Fstrong%3E%2C%20Rittenour%2C%20T.%2C%20Ault%2C%20A.%20K.%2C%20Nelson%2C%20M.%2C%20%26amp%3B%20Ramos%2C%20E.%20J.%20%282022%29.%20Investigation%20of%20quartz%20luminescence%20properties%20in%20bedrock%20faults%3A%20Fault%20slip%20processes%20reduce%20trap%20depths%2C%20lifetimes%2C%20and%20sensitivity.%20%3Ci%3ERadiation%20Measurements%3C%5C%2Fi%3E%2C%20%3Ci%3E155%3C%5C%2Fi%3E%2C%20106784.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.radmeas.2022.106784%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.radmeas.2022.106784%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Investigation%20of%20quartz%20luminescence%20properties%20in%20bedrock%20faults%3A%20Fault%20slip%20processes%20reduce%20trap%20depths%2C%20lifetimes%2C%20and%20sensitivity%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Margaret%20L.%22%2C%22lastName%22%3A%22Odlum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tammy%22%2C%22lastName%22%3A%22Rittenour%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexis%20K.%22%2C%22lastName%22%3A%22Ault%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michelle%22%2C%22lastName%22%3A%22Nelson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Evan%20J.%22%2C%22lastName%22%3A%22Ramos%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2207%5C%2F2022%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.radmeas.2022.106784%22%2C%22ISSN%22%3A%2213504487%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS1350448722000774%22%2C%22collections%22%3A%5B%228MGFHE4Z%22%5D%2C%22dateModified%22%3A%222024-03-14T18%3A06%3A46Z%22%7D%7D%2C%7B%22key%22%3A%228ZAJKG4A%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Taylor%20et%20al.%22%2C%22parsedDate%22%3A%222021-09-08%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ETaylor%2C%20M.%20P.%2C%20Ault%2C%20A.%20K.%2C%20%3Cstrong%3EOdlum%2C%20M.%20L.%3C%5C%2Fstrong%3E%2C%20%26amp%3B%20Newell%2C%20D.%20L.%20%282021%29.%20Shallow%20Rupture%20Propagation%20of%20Pleistocene%20Earthquakes%20Along%20the%20Hurricane%20Fault%2C%20UT%2C%20Revealed%20by%20Hematite%20%28U%26%23x2010%3BTh%29%5C%2FHe%20Thermochronometry%20and%20Textures.%20%3Ci%3EGeophysical%20Research%20Letters%3C%5C%2Fi%3E%2C%20%3Ci%3E48%3C%5C%2Fi%3E%2817%29%2C%20e2021GL094379.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2021GL094379%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2021GL094379%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Shallow%20Rupture%20Propagation%20of%20Pleistocene%20Earthquakes%20Along%20the%20Hurricane%20Fault%2C%20UT%2C%20Revealed%20by%20Hematite%20%28U%5Cu2010Th%29%5C%2FHe%20Thermochronometry%20and%20Textures%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Madison%20P.%22%2C%22lastName%22%3A%22Taylor%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexis%20K.%22%2C%22lastName%22%3A%22Ault%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Margaret%20L.%22%2C%22lastName%22%3A%22Odlum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dennis%20L.%22%2C%22lastName%22%3A%22Newell%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20material%20properties%20and%20distribution%20of%20faults%20above%20the%20seismogenic%20zone%20promote%20or%20inhibit%20earthquake%20rupture%20propagation.%20We%20document%20the%20depths%20and%20mechanics%20of%20fault%20slip%20along%20the%20seismically%20active%20Hurricane%20fault%2C%20UT%2C%20with%20scanning%20and%20transmission%20electron%20microscopy%20and%20hematite%20%28U%5Cu2010Th%29%5C%2FHe%20thermochronometry.%20Hematite%20occurs%20as%20mm%5Cu2010scale%2C%20striated%20patches%20on%20a%20%3E10%5Cu00a0m%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20thin%2C%20mirror%5Cu2010like%20silica%20fault%20surface.%20Hematite%20textures%20include%20bulbous%20aggregates%20and%20cataclasite%2C%20overlain%20by%20crystalline%20Fe%5Cu2010oxide%20nanorods%20and%20an%20amorphous%20silica%20layer%20at%20the%20slip%20interface.%20Textures%20reflect%20mechanical%2C%20fluid%2C%20and%20heat%5Cu2010assisted%20amorphization%20of%20hematite%20and%20silica%5Cu2010rich%20host%20rock%20that%20weaken%20the%20fault%20and%20promote%20rupture%20propagation.%20Hematite%20%28U%5Cu2010Th%29%5C%2FHe%20dates%20document%20episodes%20of%20mineralization%20and%20fault%20slip%20between%200.65%20and%200.36%5Cu00a0Ma%20at%20%5Cu223c300%5Cu00a0m%20depth.%20Data%20illustrate%20that%20some%20earthquake%20ruptures%20repeatedly%20propagate%20along%20localized%20slip%20surfaces%20in%20the%20shallow%20crust%20and%20provide%20structural%20and%20material%20property%20constraints%20for%20in%20models%20of%20fault%20slip.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Earthquake%20ruptures%20can%20travel%20to%20the%20Earth%27s%20surface%20along%20discrete%2C%20large%20faults%2C%20or%20earthquake%20energy%20may%20be%20consumed%20in%20the%20shallow%20crust%20by%20the%20creation%20of%20small%20fault%20networks%20and%20fractured%20rock%2C%20which%20may%20reduce%20ground%20shaking%20intensity.%20Estimating%20earthquake%20hazards%20requires%20knowledge%20of%20subsurface%20material%20properties%20and%20how%20they%20change%20to%20promote%20or%20inhibit%20localized%20faulting.%20We%20investigate%20the%20Hurricane%20fault%2C%20UT%2C%20part%20of%20the%20Intermountain%20Seismic%20Belt%20or%20a%20north%5Cu2013south%20trending%20zone%20of%20recorded%20seismicity%20in%20the%20western%20US%2C%20which%20has%20the%20potential%20for%20large%20earthquakes%20%28up%20to%20magnitude%207%29.%20We%20target%20hematite%2C%20an%20iron%5Cu2010oxide%20mineral%2C%20on%20a%20mirror%5Cu2010like%2C%20silica%20fault%20surface%20with%20microscopy%20and%20radiometric%20dating%20to%20document%20textural%20changes%20and%20the%20timing%20and%20depth%20of%20past%20fault%20slip.%20Nanoscale%20textures%20indicate%20the%20physical%20breakdown%20of%20hematite%20and%20surrounding%20rock%2C%20followed%20by%20the%20growth%20of%20new%20hematite%20and%20solidification%20of%20a%20silica%20surface%20layer%2C%20during%20an%20earthquake.%20Radioisotopic%20analyses%20capture%20hematite%20mineralization%20and%20fault%20slip%200.65%5Cu20130.36%20million%20years%20ago%20at%20shallow%20depths%20%28%5Cu223c300%5Cu00a0m%29.%20In%20this%20example%2C%20the%20combination%20of%20mechanical%20and%20hydrothermal%20processes%20weaken%20fault%20materials%2C%20leading%20to%20repeated%20propagation%20of%20earthquake%20ruptures%20toward%20the%20surface%20along%20a%20discrete%20fault.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Hematite%20textures%20and%20%28U%5Cu2010Th%29%5C%2FHe%20dates%20record%20mineralization%20and%20slip%20at%20%5Cu223c0.65%5Cu20130.36%5Cu00a0Ma%20and%20%5Cu223c300%5Cu00a0m%20depth%20on%20the%20seismogenic%20Hurricane%20fault%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Comminution%20and%20hydrothermal%20fluids%20cause%20amorphization%20of%20hematite%20and%20adjacent%20host%20rock%20that%20weaken%20the%20fault%20during%20seismic%20slip%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Data%20demonstrate%20earthquake%20ruptures%20repeatedly%20propagate%20along%20localized%20slip%20surfaces%20in%20the%20shallow%20crust%22%2C%22date%22%3A%222021-09-08%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2021GL094379%22%2C%22ISSN%22%3A%220094-8276%2C%201944-8007%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2021GL094379%22%2C%22collections%22%3A%5B%228MGFHE4Z%22%5D%2C%22dateModified%22%3A%222024-03-14T18%3A14%3A20Z%22%7D%7D%2C%7B%22key%22%3A%227EPC4YBZ%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Odlum%20et%20al.%22%2C%22parsedDate%22%3A%222021%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EOdlum%2C%20M.%20L.%3C%5C%2Fstrong%3E%2C%20Ault%2C%20A.%20K.%2C%20Channer%2C%20M.%20A.%2C%20%26amp%3B%20Calzolari%2C%20G.%20%282021%29.%20Seismicity%20recorded%20in%20hematite%20fault%20mirrors%20in%20the%20Rio%20Grande%20rift.%20%3Ci%3EGeosphere%3C%5C%2Fi%3E%2C%20%3Ci%3E18%3C%5C%2Fi%3E%281%29%2C%20241%26%23x2013%3B260.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1130%5C%2FGES02426.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1130%5C%2FGES02426.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Seismicity%20recorded%20in%20hematite%20fault%20mirrors%20in%20the%20Rio%20Grande%20rift%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.L.%22%2C%22lastName%22%3A%22Odlum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.K.%22%2C%22lastName%22%3A%22Ault%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.A.%22%2C%22lastName%22%3A%22Channer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Calzolari%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Exhumed%20fault%20rocks%20provide%20a%20textural%20and%20chemical%20record%20of%20how%20fault%20zone%20composition%20and%20architecture%20control%20coseismic%20temperature%20rise%20and%20earthquake%20mechanics.%20We%20integrated%20field%2C%20microstructural%2C%20and%20hematite%20%28U-Th%29%5C%2FHe%20%28He%29%20thermochronometry%20analyses%20of%20exhumed%20minor%20%28square-centimeter-scale%20surface%20area%29%20hematite%20fault%20mirrors%20that%20crosscut%20the%20ca.%201400%20Ma%20Sandia%20granite%20in%20two%20localities%20along%20the%20eastern%20flank%20of%20the%20central%20Rio%20Grande%20rift%2C%20New%20Mexico.%20We%20used%20these%20data%20to%20characterize%20fault%20slip%20textures%3B%20evaluate%20relationships%20among%20fault%20zone%20composition%2C%20thickness%2C%20and%20inferred%20magnitude%20of%20friction-generated%20heat%3B%20and%20document%20the%20timing%20of%20fault%20slip.%20Hematite%20fault%20mirrors%20are%20collocated%20with%20and%20crosscut%20specular%20hematite%20veins%20and%20hematite-cemented%20cataclasite.%20Observed%20fault%20mirror%20microstructures%20reflect%20fault%20reactivation%20and%20strain%20localization%20within%20the%20comparatively%20weaker%20hematite%20relative%20to%20the%20granite.%20The%20fault%20mirror%20volume%20of%20some%20slip%20surfaces%20exhibits%20polygonal%2C%20sintered%20hematite%20nanoparticles%20likely%20created%20during%20coseismic%20temperature%20rise.%20Individual%20fault%20mirror%20hematite%20He%20dates%20range%20from%20ca.%2097%20to%205%20Ma%2C%20and%20~80%25%20of%20dates%20from%20fault%20mirror%20volume%20aliquots%20with%20high-temperature%20crystal%20morphologies%20are%20ca.%2025%5Cu201310%20Ma.%20These%20aliquots%20have%20grain-size%5Cu2013dependent%20closure%20temperatures%20of%20~75%5Cu2013108%20%5Cu00b0C.%20A%20new%20mean%20apatite%20He%20date%20of%2013.6%20%5Cu00b1%202.6%20Ma%20from%20the%20Sandia%20granite%20is%20consistent%20with%20prior%20low-temperature%20thermochronometry%20data%20and%20reflects%20rapid%2C%20Miocene%20rift%20flank%20exhumation.%20Comparisons%20of%20thermal%20history%20models%20and%20hematite%20He%20data%20patterns%2C%20together%20with%20field%20and%20microstructural%20observations%2C%20indicate%20that%20seismicity%20along%20the%20fault%20mirrors%20at%20~2%5Cu20134%20km%20depth%20was%20coeval%20with%20rift%20flank%20exhumation.%20The%20prevalence%20and%20distribution%20of%20high-temperature%20hematite%20grain%20morphologies%20on%20different%20slip%20surfaces%20correspond%20with%20thinner%20deforming%20zones%20and%20higher%20proportions%20of%20quartz%20and%20feldspar%20derived%20from%20the%20granite%20that%20impacted%20the%20bulk%20strength%20of%20the%20deforming%20zone.%20Thus%2C%20these%20exhumed%20fault%20mirrors%20illustrate%20how%20evolving%20fault%20material%20properties%20reflect%20but%20also%20govern%20coseismic%20temperature%20rise%20and%20associated%20dynamic%20weakening%20mechanisms%20on%20minor%20faults%20at%20the%20upper%20end%20of%20the%20seismogenic%20zone.%22%2C%22date%22%3A%2211-2021%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1130%5C%2FGES02426.1%22%2C%22ISSN%22%3A%221553-040X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.geoscienceworld.org%5C%2Fgeosphere%5C%2Farticle%5C%2F18%5C%2F1%5C%2F241%5C%2F609628%5C%2FSeismicity-recorded-in-hematite-fault-mirrors-in%22%2C%22collections%22%3A%5B%228MGFHE4Z%22%5D%2C%22dateModified%22%3A%222024-03-14T19%3A04%3A07Z%22%7D%7D%2C%7B%22key%22%3A%223ZRU2FKN%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Levy%20et%20al.%22%2C%22parsedDate%22%3A%222020%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ELevy%2C%20D.%20A.%2C%20Zuza%2C%20A.%20V.%2C%20Haproff%2C%20P.%20J.%2C%20%26amp%3B%20%3Cstrong%3EOdlum%2C%20M.%20L.%3C%5C%2Fstrong%3E%20%282020%29.%20Early%20Permian%20tectonic%20evolution%20of%20the%20Last%20Chance%20thrust%20system%3A%20An%20example%20of%20induced%20subduction%20initiation%20along%20a%20plate%20boundary%20transform.%20%3Ci%3EGSA%20Bulletin%3C%5C%2Fi%3E%2C%20%3Ci%3E133%3C%5C%2Fi%3E%285%26%23x2013%3B6%29%2C%201105%26%23x2013%3B1127.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1130%5C%2FB35752.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1130%5C%2FB35752.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Early%20Permian%20tectonic%20evolution%20of%20the%20Last%20Chance%20thrust%20system%3A%20An%20example%20of%20induced%20subduction%20initiation%20along%20a%20plate%20boundary%20transform%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Drew%20A.%22%2C%22lastName%22%3A%22Levy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20V.%22%2C%22lastName%22%3A%22Zuza%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%20J.%22%2C%22lastName%22%3A%22Haproff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Margaret%20L.%22%2C%22lastName%22%3A%22Odlum%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20late%20Paleozoic%20is%20an%20important%20precursor%20stage%20in%20the%20development%20of%20the%20Mesozoic%20Cordilleran%20subduction%20system%20along%20the%20western%20margin%20of%20North%20America%2C%20but%20the%20tectonic%20history%20remains%20ambiguous%20due%20to%20complex%20overprinting%20deformation%20and%20magmatism.%20Determining%20the%20driving%20mechanism%20of%20large%20magnitude%20Permian%20shortening%20in%20southwest%20Laurentia%20is%20critical%20to%20understanding%20the%20late%20Paleozoic%20transition%20from%20transform%20margin%20to%20subduction%20zone.%20We%20investigated%20the%20driving%20mechanism%20of%20the%20Permian%20Last%20Chance%20thrust%20system%20in%20east-central%20California%20to%20understand%20this%20transition%20prior%20to%20the%20development%20of%20the%20Mesozoic%20Cordilleran%20arc.%20Here%2C%20we%20present%20the%20results%20of%20new%20geological%20mapping%2C%20detrital%20zircon%20U-Pb%20geochronology%2C%20and%20a%20synthesis%20of%20regional%20tectonics%20to%20inform%20a%20kinematic%20model%20of%20the%20Last%20Chance%20thrust%20system%20and%20outline%20the%20Permian%5Cu2013Triassic%20tectonic%20evolution%20of%20the%20plate%20boundary%20during%20induced%20subduction%20initiation.%20The%20record%20of%20subduction%20initiation%20along%20an%20inferred%20late%20Paleozoic%20transform%20fault%20%28the%20California-Coahuila%20transform%29%20is%20preserved%20by%20%281%29%20Permian%20arc%20magmatism%2C%20%282%29%20the%20onset%20of%20volcaniclastic%20sedimentation%2C%20and%20%283%29%20the%20development%20of%20a%20regional%20transpressional%20system%20in%20present-day%20east-central%20California.%20The%20evolution%20of%20this%20transpressional%20system%20and%20subduction%20zone%20is%20recorded%20by%20development%20of%20the%20Last%20Chance%20thrust%20system%20of%20the%20Death%20Valley%20region.%20Geological%20mapping%20in%20the%20Last%20Chance%20Range%2C%20northern%20Death%20Valley%20National%20Park%2C%20and%20the%20Inyo%20Mountains%20reveals%20the%20east-directed%20Last%20Chance%20thrust%20system%20was%20constructed%20by%20repetitive%20out-of-sequence%20deformation%20consistent%20with%20transpressional%20strain.%20The%20Last%20Chance%20thrust%20system%20accommodated%20a%20minimum%20of%20%26gt%3B75%20km%20%2860%25%29%20shortening%2C%20based%20on%20cross-section%20restorations%20guided%20by%20regional%20stratigraphic%20relationships%20and%20restoration%20of%20subsequent%20Mesozoic%20deformation.%20Our%20revised%20model%20of%20Jurassic%20extensional%20exhumation%20of%20the%20Snow%20Lake%20terrane%20argues%20the%20Last%20chance%20thrust%20was%20not%20reactivated%20during%20the%20Mesozoic.%20Large-magnitude%20shortening%20along%20the%20California-Coahuila%20transform%20accommodated%20a%20significant%20component%20of%20the%20convergent%20plate%20motion%20as%20the%20Panthalassan%20crust%20was%20thrust%20below%20the%20continental%20margin%20before%20initial%20slab%20sinking.%20Numerical%20models%20show%20the%20forces%20resisting%20subduction%20are%20greatest%20before%20initial%20slab%20sinking%20takes%20place%2C%20and%20compression%20is%20transmitted%20in%20board%20from%20the%20plate%20boundary.%20We%20argue%20the%20Last%20Chance%20thrust%20system%20developed%20in%20response%20to%20this%20compression.%20Early-middle%20Permian%20plutons%20and%20late%20Permian%20detrital%20zircons%20in%20coeval%20basins%20suggest%20subduction%20was%20well%20established%20by%20the%20early%20Permian.%20Collectively%2C%20the%20preservation%20of%20a%20thrust%20system%2C%20early%20arc%20magmatism%2C%20and%20syntectonic%20sedimentary%20basins%2C%20which%20are%20features%20typically%20destroyed%20by%20subduction%20magmatism%20and%20deformation%2C%20allow%20for%20the%20evaluation%20of%20subduction%20initiation%20mechanisms%20based%20on%20field%20observations.%22%2C%22date%22%3A%2210-2020%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1130%5C%2FB35752.1%22%2C%22ISSN%22%3A%220016-7606%2C%201943-2674%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.geoscienceworld.org%5C%2Fgsa%5C%2Fgsabulletin%5C%2Farticle%5C%2F133%5C%2F5-6%5C%2F1105%5C%2F591977%5C%2FEarly-Permian-tectonic-evolution-of-the-Last%22%2C%22collections%22%3A%5B%228MGFHE4Z%22%5D%2C%22dateModified%22%3A%222024-03-14T19%3A00%3A52Z%22%7D%7D%2C%7B%22key%22%3A%22LPEUIEAQ%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Haproff%20et%20al.%22%2C%22parsedDate%22%3A%222020%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EHaproff%2C%20P.%20J.%2C%20%3Cstrong%3EOdlum%2C%20M.%20L.%3C%5C%2Fstrong%3E%2C%20Zuza%2C%20A.%20V.%2C%20Yin%2C%20A.%2C%20%26amp%3B%20Stockli%2C%20D.%20F.%20%282020%29.%20Structural%20and%20Thermochronologic%20Constraints%20on%20the%20Cenozoic%20Tectonic%20Development%20of%20the%20Northern%20Indo%26%23x2010%3BBurma%20Ranges.%20%3Ci%3ETectonics%3C%5C%2Fi%3E%2C%20%3Ci%3E39%3C%5C%2Fi%3E%289%29%2C%20e2020TC006231.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2020TC006231%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2020TC006231%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Structural%20and%20Thermochronologic%20Constraints%20on%20the%20Cenozoic%20Tectonic%20Development%20of%20the%20Northern%20Indo%5Cu2010Burma%20Ranges%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%20J.%22%2C%22lastName%22%3A%22Haproff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Margaret%20L.%22%2C%22lastName%22%3A%22Odlum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20V.%22%2C%22lastName%22%3A%22Zuza%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22An%22%2C%22lastName%22%3A%22Yin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%20F.%22%2C%22lastName%22%3A%22Stockli%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20~1%2C500%5Cu2010km%5Cu2010long%2C%20north%20trending%20Eastern%20Flanking%20Belt%20of%20the%20Himalayan%5Cu2010Tibetan%20orogenic%20system%20is%20located%20along%20the%20eastern%20margin%20of%20the%20Indian%20subcontinent.%20Although%20the%20belt%20is%20a%20key%20element%20of%20the%20Cenozoic%20India%5Cu2010Asia%20collisional%20zone%2C%20its%20tectonic%20evolution%20remains%20poorly%20understood.%20This%20lack%20of%20knowledge%20has%20impacted%20our%20ability%20to%20differentiate%20between%20competing%20hypotheses%20for%20the%20evolution%20of%20the%20India%5Cu2010Asia%20collision.%20To%20address%20this%20problem%2C%20we%20integrate%20constraints%20on%20the%20structural%20framework%20and%20magnitude%20of%20Cenozoic%20shortening%20strain%20with%20thermochronology%20of%20the%20northernmost%20segment%20of%20the%20belt%20located%20directly%20southeast%20of%20the%20eastern%20Himalayan%20syntaxis%20%28i.e.%2C%20the%20northern%20Indo%5Cu2010Burma%20Ranges%29.%20The%20study%20area%20exposes%20a%20southwest%20directed%20thrust%20belt%20that%20is%20bounded%20by%20the%20Indian%20craton%20in%20the%20west%20and%20the%20right%5Cu2010slip%20Jiali%20fault%20zone%20in%20the%20east.%20New%20and%20existing%20%28U%5Cu2010Th%29%5C%2FHe%20and%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%2040%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Ar%5C%2F%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%2039%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Ar%20thermochronologic%20data%20indicate%20that%20thrust%5Cu2010related%20cooling%20occurred%20from%20~36%5Cu00a0Ma%20in%20the%20northeast%20to%20~5.6%5Cu00a0Ma%20in%20the%20southwest.%20Episodes%20of%20out%5Cu2010of%5Cu2010sequence%20thrusting%20occurred%20at%20~30%5Cu201320%2C%20~14%5Cu201312%2C%20and%20~11%5Cu20136%5Cu00a0Ma%20within%20the%20thrust%20belt.%20Restoration%20of%20the%20thrust%20belt%20yields%20a%20minimum%20horizontal%20shortening%20of%20~280%5Cu00a0km%20%28~86%25%29.%20These%20results%20combined%20with%20%281%29%20the%20recorded%20local%20absence%20of%20several%20major%20Himalayan%5Cu2010Tibetan%20lithologic%20units%20%28i.e.%2C%20Tethyan%20Himalayan%20Sequence%2C%20Greater%20Himalayan%20Sequence%2C%20and%20southern%20Gangdese%20batholith%29%20and%20%282%29%20the%20southward%20decrease%20in%20the%20thrust%5Cu2010belt%20width%20%2833%5Cu20135%5Cu00a0km%29%20suggest%20a%20complex%20history%20of%20thrusting%20in%20the%20northern%20Indo%5Cu2010Burma%20Ranges%20and%20an%20spatial%20increase%20in%20Cenozoic%20crustal%20shortening%20and%5C%2For%20continental%20underthrusting%20from%20west%20to%20east%20across%20the%20eastern%20Himalayan%20syntaxis.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20northern%20Indo%5Cu2010Burma%20Ranges%20expose%20a%20Cenozoic%20southwest%20to%20west%20directed%20thrust%20belt%20that%20is%20bounded%20by%20two%20active%20right%5Cu2010slip%20faults%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Thrusting%20since%20~36%5Cu00a0Ma%20accommodated%20%3E280%5Cu00a0km%20%2886%25%29%20shortening%20during%20clockwise%20crustal%20flow%20around%20the%20eastern%20Himalayan%20syntaxis%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Our%20findings%20support%20an%20increase%20in%20Cenozoic%20shortening%20and%5C%2For%20continental%20underthrusting%20along%20the%20easternmost%20India%5Cu2010Asia%20plate%20boundary%22%2C%22date%22%3A%2209%5C%2F2020%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2020TC006231%22%2C%22ISSN%22%3A%220278-7407%2C%201944-9194%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2020TC006231%22%2C%22collections%22%3A%5B%228MGFHE4Z%22%5D%2C%22dateModified%22%3A%222024-03-14T18%3A14%3A58Z%22%7D%7D%2C%7B%22key%22%3A%223AGQLBVD%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Odlum%20and%20Stockli%22%2C%22parsedDate%22%3A%222020%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EOdlum%2C%20M.%20L.%3C%5C%2Fstrong%3E%2C%20%26amp%3B%20Stockli%2C%20D.%20F.%20%282020%29.%20Geochronologic%20constraints%20on%20deformation%20and%20metasomatism%20along%20an%20exhumed%20mylonitic%20shear%20zone%20using%20apatite%20U-Pb%2C%20geochemistry%2C%20and%20microtextural%20analysis.%20%3Ci%3EEarth%20and%20Planetary%20Science%20Letters%3C%5C%2Fi%3E%2C%20%3Ci%3E538%3C%5C%2Fi%3E%2C%20116177.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.epsl.2020.116177%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.epsl.2020.116177%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Geochronologic%20constraints%20on%20deformation%20and%20metasomatism%20along%20an%20exhumed%20mylonitic%20shear%20zone%20using%20apatite%20U-Pb%2C%20geochemistry%2C%20and%20microtextural%20analysis%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Margaret%20L.%22%2C%22lastName%22%3A%22Odlum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%20F.%22%2C%22lastName%22%3A%22Stockli%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2205%5C%2F2020%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.epsl.2020.116177%22%2C%22ISSN%22%3A%220012821X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0012821X20301205%22%2C%22collections%22%3A%5B%228MGFHE4Z%22%5D%2C%22dateModified%22%3A%222024-03-14T18%3A15%3A18Z%22%7D%7D%2C%7B%22key%22%3A%227MLH5FFR%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Odlum%20et%20al.%22%2C%22parsedDate%22%3A%222019-08-20%22%2C%22numChildren%22%3A2%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EOdlum%2C%20M.%20L.%3C%5C%2Fstrong%3E%2C%20Stockli%2C%20D.%20F.%2C%20Capaldi%2C%20T.%20N.%2C%20Thomson%2C%20K.%20D.%2C%20Clark%2C%20J.%2C%20Puigdef%26%23xE1%3Bbregas%2C%20C.%2C%20%26amp%3B%20Fildani%2C%20A.%20%282019%29.%20Tectonic%20and%20sediment%20provenance%20evolution%20of%20the%20South%20Eastern%20Pyrenean%20foreland%20basins%20during%20rift%20margin%20inversion%20and%20orogenic%20uplift.%20%3Ci%3ETectonophysics%3C%5C%2Fi%3E%2C%20%3Ci%3E765%3C%5C%2Fi%3E%2C%20226%26%23x2013%3B248.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.tecto.2019.05.008%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.tecto.2019.05.008%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Tectonic%20and%20sediment%20provenance%20evolution%20of%20the%20South%20Eastern%20Pyrenean%20foreland%20basins%20during%20rift%20margin%20inversion%20and%20orogenic%20uplift%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20L.%22%2C%22lastName%22%3A%22Odlum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%20F.%22%2C%22lastName%22%3A%22Stockli%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%20N.%22%2C%22lastName%22%3A%22Capaldi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%20D.%22%2C%22lastName%22%3A%22Thomson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Clark%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Puigdef%5Cu00e1bregas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Fildani%22%7D%5D%2C%22abstractNote%22%3A%22The%20Cretaceous%20to%20Oligocene%20detrital%20record%20in%20the%20southern%20Eastern%20Pyrenees%20is%20utilized%20to%20address%20the%20degree%20to%20which%20precursor%20basin%20architecture%20and%20hyper-extensional%20rift%20structures%20impacted%20subsequent%20sedimentary%20provenance%20and%20dispersal%20systems%20and%20foreland%20basin%20evolution.%20This%20study%20presents%20new%20isotopic%20provenance%20analysis%20of%20detrital%20zircon%20U-Pb%20and%20%28U-Th%29%5C%2FHe%20double-dating%2C%20and%20detrital%20rutile%20U-Pb%20and%20trace%20element%20geochemistry%20to%20track%20sediment%20provenance%20evolution.%20Late%20Cretaceous-Paleocene%20sediments%20show%20zircon%20with%20dominantly%20Variscan%20U-Pb%20and%20Jurassic-Early%20Cretaceous%20ZHe%20cooling%20ages%20that%20are%20derived%20from%20southeastern%20Catalan%20Coastal%20Ranges%20and%20eastern%20Corsica-Sardinia%20regions%2C%20and%20localized%20structural%20inversion%20along%20inherited%20Mesozoic%20extensional%20faults%20and%20erosional%20recycling%20of%20syn-rift%20sediments.%20Eocene%20deposits%20have%20multimodal%20U-Pb%20ages%20that%20stratigraphically%20upsection%20change%20to%20unimodal%20Variscan%20ages%2C%20with%20the%20appearance%20and%20upsection%20increase%20in%20Pyrenean%20ZHe%20ages%2C%20and%20increase%20in%20Variscan%20aged%20detrital%20rutile%20that%20record%20a%20significant%20shift%20in%20sediment%20source%20area%20to%20northern%20sources%20recording%20exhumation%20and%20unroofing%20of%20the%20Axial%20Zone%20Paleozoic%20basement%20sources%2C%20and%20development%20of%20new%20ramp-flat%20style%20structures%20in%20the%20Southern%20Pyrenean%20Zone%20fold-thrust%20belt.%20During%20the%20Oligocene%2C%20incipient%20foreland%20basin%20deposits%20were%20cannibalized%20and%20recycled%20into%20the%20foreland%20basin%20as%20thrusting%20advanced%20toward%20the%20foreland.%20The%20Eastern%20Pyrenean%20foreland%20basin%20records%20a%20different%20provenance%20history%20from%20Central%20Pyrenean%20Tremp%20Basin%2C%20suggesting%20the%20basins%20were%20segmented%20throughout%20the%20Late%20Cretaceous%20to%20Oligocene%2C%20while%20the%20Ripoll%20and%20Ager%20basins%20appear%20to%20have%20shared%20similar%20source%20areas.%20The%20sediment%20provenance%20evolution%20coupled%20with%20Pyrenean%20fault%20activity%20and%20shortening%20rates%2C%20hinterland%20exhumation%2C%20foreland%20basin%20subsidence%2C%20and%20climate%20proxies%20presents%20a%20detailed%20dataset%20to%20understand%20these%20relationships%20within%20the%20Eastern%20Pyrenean%20orogenic%20system%20and%20highlight%20the%20dominant%20control%20precursor%20basins%20and%20structural%20inheritance%20has%20on%20the%20subsequent%20fold-thrust%20belts%20and%20foreland%20basin%20evolution.%22%2C%22date%22%3A%22Aug%2020%202019%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.tecto.2019.05.008%22%2C%22ISSN%22%3A%220040-1951%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22BGC9F53I%22%2C%228MGFHE4Z%22%5D%2C%22dateModified%22%3A%222024-02-23T23%3A13%3A55Z%22%7D%7D%2C%7B%22key%22%3A%22QGV4F8G2%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zuza%20et%20al.%22%2C%22parsedDate%22%3A%222019%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EZuza%2C%20A.%20V.%2C%20Cao%2C%20W.%2C%20Hinz%2C%20N.%20H.%2C%20DesOrmeau%2C%20J.%20W.%2C%20%3Cstrong%3EOdlum%2C%20M.%20L.%3C%5C%2Fstrong%3E%2C%20%26amp%3B%20Stockli%2C%20D.%20F.%20%282019%29.%20Footwall%20Rotation%20in%20a%20Regional%20Detachment%20Fault%20System%3A%20Evidence%20for%20Horizontal%26%23x2010%3BAxis%20Rotational%20Flow%20in%20the%20Miocene%20Searchlight%20Pluton%2C%20NV.%20%3Ci%3ETectonics%3C%5C%2Fi%3E%2C%20%3Ci%3E38%3C%5C%2Fi%3E%287%29%2C%202506%26%23x2013%3B2539.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2019TC005513%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2019TC005513%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Footwall%20Rotation%20in%20a%20Regional%20Detachment%20Fault%20System%3A%20Evidence%20for%20Horizontal%5Cu2010Axis%20Rotational%20Flow%20in%20the%20Miocene%20Searchlight%20Pluton%2C%20NV%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20V.%22%2C%22lastName%22%3A%22Zuza%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wenrong%22%2C%22lastName%22%3A%22Cao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicholas%20H.%22%2C%22lastName%22%3A%22Hinz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Joel%20W.%22%2C%22lastName%22%3A%22DesOrmeau%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Margaret%20L.%22%2C%22lastName%22%3A%22Odlum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%20F.%22%2C%22lastName%22%3A%22Stockli%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20Miocene%20Searchlight%20pluton%2C%20exposed%20in%20the%20Colorado%20River%20Extensional%20Corridor%20of%20southern%20Nevada%2C%20tilted%20up%20to%2090%5Cu00b0%20on%20its%20side%20in%20the%20footwall%20of%20the%20east%5Cu2010directed%20Dupont%20Mountain%20detachment%20fault%20system.%20Rapid%20extension%20and%20rotation%20occurred%20immediately%20after%20the%20ca.%2017%5Cu201316%5Cu2010Ma%20emplacement%20of%20this%2010%20%5Cu00d7%2010%5Cu2010km%20granite%5Cu2010monzogranite%20body.%20To%20constrain%20the%20mechanism%20and%20timing%20of%20rapid%20footwall%20exhumation%2C%20we%20conducted%20detailed%20field%2C%20microstructural%2C%20electron%20backscatter%20diffraction%2C%20and%20zircon%20%28U%5Cu2010Th%29%5C%2FHe%20%28ZHe%29%20and%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%2040%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Ar%5C%2F%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%2039%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Ar%20hornblende%20thermochronological%20analyses.%20Steeply%20dipping%20fabrics%20across%20this%20pluton%20formed%20over%20a%20range%20of%20temperature%20conditions%2C%20from%20magmatic%20to%20high%5Cu2010%20to%20low%5Cu2010temperature%20subsolidus%20strain%2C%20and%20display%20distributed%20eastside%5Cu2010up%20shear.%20ZHe%20cooling%20ages%20are%20consistent%20with%20constraints%20from%20tilted%20volcanic%20strata%20and%20crosscutting%20dikes%20that%20suggest%20initial%20rapid%20rotation%20%28~75%5Cu00b0%5C%2FMyr%29%20at%2016.2%5Cu201315.7%20Ma%20followed%20by%20more%20modest%20exhumation%20rates%20until%20ca.%2013%20Ma.%20Our%20observations%20are%20used%20to%20test%20tilting%20models%20for%20the%20Searchlight%20pluton%2C%20including%20rigid%5Cu2010body%20rotation%2C%20antithetic%20imbrication%2C%20or%20flow%5Cu2010like%20rotation.%20Available%20observations%20are%20most%20consistent%20with%20a%20flow%5Cu2010like%20tilting%20mechanism.%20We%20present%20scaling%20analyses%20that%20highlight%20how%20footwall%20tilting%5Cu2010dominated%20extension%20more%20effectively%20cools%20the%20upper%20crust%20than%20pure%5Cu2010shear%20extension%20because%20the%20hottest%20deep%20materials%20exhumed%20rapidly%20toward%20the%20cooler%20surface.%20This%20extensional%20mechanism%20efficiently%20cools%20the%20upper%20crust%2C%20causing%20a%20negative%20feedback%20whereby%20the%20rapidly%20cooled%20crust%20becomes%20strong%20enough%20to%20halt%20further%20fast%20simple%5Cu2010shear%20extension.%20This%20may%20explain%20why%20rapid%20extension%20was%20transient%20and%20further%20extension%20is%20mostly%20accommodated%20by%20high%5Cu2010angle%20low%5Cu2010offset%20magnitude%20normal%20faults%20that%20developed%20in%20a%20colder%20stronger%20crust.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20Searchlight%20pluton%2C%20Colorado%20River%20Extensional%20Corridor%2C%20was%20exhumed%20to%20the%20surface%20via%20footwall%20tilting%20shortly%20after%20intrusion%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20This%20exhumation%20was%20facilitated%20by%20flowing%20of%20the%20hot%20low%5Cu2010viscosity%20pluton%20during%20hanging%20wall%20removal%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Rapid%20footwall%20advection%20effectively%20cools%20the%20crust%2C%20thus%20strengthening%20it%20and%20halting%20fast%20extension%22%2C%22date%22%3A%2207%5C%2F2019%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2019TC005513%22%2C%22ISSN%22%3A%220278-7407%2C%201944-9194%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2019TC005513%22%2C%22collections%22%3A%5B%228MGFHE4Z%22%5D%2C%22dateModified%22%3A%222024-03-14T18%3A16%3A04Z%22%7D%7D%2C%7B%22key%22%3A%228DWZKYWT%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Odlum%20and%20Stockli%22%2C%22parsedDate%22%3A%222019%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EOdlum%2C%20M.%20L.%3C%5C%2Fstrong%3E%2C%20%26amp%3B%20Stockli%2C%20D.%20F.%20%282019%29.%20Thermotectonic%20Evolution%20of%20the%20North%20Pyrenean%20Agly%20Massif%20During%20Early%20Cretaceous%20Hyperextension%20Using%20Multi%26%23x2010%3Bmineral%20U%26%23x2010%3BPb%20Thermochronometry.%20%3Ci%3ETectonics%3C%5C%2Fi%3E%2C%20%3Ci%3E38%3C%5C%2Fi%3E%285%29%2C%201509%26%23x2013%3B1531.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2018TC005298%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2018TC005298%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Thermotectonic%20Evolution%20of%20the%20North%20Pyrenean%20Agly%20Massif%20During%20Early%20Cretaceous%20Hyperextension%20Using%20Multi%5Cu2010mineral%20U%5Cu2010Pb%20Thermochronometry%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20L.%22%2C%22lastName%22%3A%22Odlum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%20F.%22%2C%22lastName%22%3A%22Stockli%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20North%20Pyrenean%20Zone%20represents%20a%20fossil%20hyperextended%20passive%20margin%2C%20with%20limited%20orogenic%20overprinting%2C%20where%20the%20thermal%20and%20structural%20patterns%20associated%20with%20crustal%20thinning%20and%20mantle%20exhumation%20can%20be%20studied%20on%20rocks%20exposed%20at%20the%20surface.%20The%20Agly%20Massif%20is%20a%20tilted%20~10%5Cu2010km%5Cu2010thick%20crustal%20section%20of%20Paleozoic%20and%20upper%20Proterozoic%20magmatic%20and%20greenschist%20to%20granulitic%20metamorphic%20rocks%20in%20the%20easternmost%20North%20Pyrenean%20Zone.%20We%20applied%20multi%5Cu2010mineral%20geochronometry%20and%20thermochronometry%20on%20structural%5C%2Fcrustal%20transects%20across%20the%20massif%20to%20understand%20the%20exhumation%20history%20of%20the%20upper%20and%20lower%20continental%20crust%20during%20extreme%20crustal%20thinning%20and%20mantle%20exhumation.%20Integration%20of%20zircon%20and%20apatite%20U%5Cu2010Pb%20ages%20provides%20unprecedented%20constraints%20to%20understand%20the%20decoupled%20versus%20coupled%20extensional%20evolution%2C%20exhumation%20timing%20of%20the%20middle%5Cu2010lower%20crust%2C%20and%20the%20age%20of%20juxtaposition%20of%20the%20upper%20crust%20granitic%20pluton%20with%20high%5Cu2010grade%20gneisses.%20The%20Saint%20Arnac%20pluton%20was%20emplaced%20and%20cooled%20in%20the%20upper%20crust%20during%20the%20Carboniferous%20and%20remained%20at%20temperatures%20between%20450%20and%20180%5Cu00a0%5Cu00b0C%20until%20the%20Late%20Cretaceous.%20The%20middle%20to%20lower%20crust%20was%20metamorphosed%20during%20the%20Carboniferous%20and%20remained%20at%20temperatures%20%3E450%5Cu00a0%5Cu00b0C%20until%20the%20Aptian%2C%20when%20it%20was%20rapidly%20exhumed%20along%20a%20midcrustal%20shear%20zone.%20Deformation%20was%20initially%20decoupled%20along%20a%20midcrustal%20ductile%20shear%20zone%20until%20the%20whole%20massif%20was%20in%20the%20brittle%20field%2C%20with%20structural%20juxtaposition%20of%20the%20units%2C%20and%20exhumation%20was%20coupled%20and%20controlled%20by%20a%20major%20southward%20dipping%20detachment%20fault%20at%20the%20southern%20border%20of%20the%20massif.%20The%20basement%20massif%20and%20synrift%20sedimentary%20rocks%20record%20significantly%20different%20thermal%20histories%20during%20rifting.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20High%5Cu2010temperature%20thermochronometers%20record%20the%20preorogenic%2C%20Early%20Cretaceous%20rifting%20and%20hyperextension%20in%20the%20Eastern%20Pyrenees%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Apatite%20U%5Cu2010Pb%20thermochronometry%20distinguishes%20between%20decoupled%20and%20coupled%20extension%20constrains%20exhumation%20of%20the%20middle%5Cu2010lower%20crust%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20Agly%20Massif%20provides%20important%20and%20transportable%20insights%20into%20the%20temporal%2C%20thermal%2C%20and%20geometric%20evolution%20of%20rifted%20margins%22%2C%22date%22%3A%2205%5C%2F2019%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2018TC005298%22%2C%22ISSN%22%3A%220278-7407%2C%201944-9194%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2018TC005298%22%2C%22collections%22%3A%5B%228MGFHE4Z%22%5D%2C%22dateModified%22%3A%222024-03-14T18%3A15%3A32Z%22%7D%7D%2C%7B%22key%22%3A%229UU8ML3C%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Ternois%20et%20al.%22%2C%22parsedDate%22%3A%222019%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ETernois%2C%20S.%2C%20Odlum%2C%20M.%2C%20Ford%2C%20M.%2C%20Pik%2C%20R.%2C%20Stockli%2C%20D.%2C%20Tibari%2C%20B.%2C%20Vacherat%2C%20A.%2C%20%26amp%3B%20Bernard%2C%20V.%20%282019%29.%20Thermochronological%20Evidence%20of%20Early%20Orogenesis%2C%20Eastern%20Pyrenees%2C%20France.%20%3Ci%3ETectonics%3C%5C%2Fi%3E%2C%20%3Ci%3E38%3C%5C%2Fi%3E%284%29%2C%201308%26%23x2013%3B1336.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2018TC005254%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2018TC005254%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Thermochronological%20Evidence%20of%20Early%20Orogenesis%2C%20Eastern%20Pyrenees%2C%20France%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S%5Cu00e9bastien%22%2C%22lastName%22%3A%22Ternois%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Margaret%22%2C%22lastName%22%3A%22Odlum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mary%22%2C%22lastName%22%3A%22Ford%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rapha%5Cu00ebl%22%2C%22lastName%22%3A%22Pik%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%22%2C%22lastName%22%3A%22Stockli%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Boucha%5Cu00efb%22%2C%22lastName%22%3A%22Tibari%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Arnaud%22%2C%22lastName%22%3A%22Vacherat%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vincent%22%2C%22lastName%22%3A%22Bernard%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20In%20collisional%20orogens%2C%20distinguishing%20the%20thermal%20signature%20of%20early%20orogenesis%20from%20the%20preceding%20rift%20or%20from%20subsequent%20thermal%20events%20is%20a%20major%20challenge.%20We%20present%20an%20integrated%20geological%20and%20low%5Cu2010temperature%20thermochronology%20study%20of%20the%20Paleozoic%20Agly%5Cu2010Salvezines%20crustal%20block%20in%20the%20retrowedge%20of%20the%20eastern%20Pyrenees%20%28France%29.%20The%20northern%20Pyrenees%20preserves%20one%20of%20the%20best%20geological%20records%20of%20a%20rift%5Cu2010to%5Cu2010collision%20transition.%20The%20Agly%5Cu2010Salvezines%20block%20represents%20the%20inverted%20distal%20European%20margin%20of%20an%20Aptian%5Cu2013Cenomanian%20rift%20system.%20Seventeen%20samples%20were%20collected%20throughout%20the%20external%20orogenic%20massif%20and%20analyzed%20for%20low%5Cu2010temperature%20thermochronology%3A%20zircon%20%28U%5Cu2010Th%29%5C%2FHe%20dating%20documents%20the%20cooling%20history%20of%20the%20massif%20during%20the%20initiation%20and%20early%20phase%20of%20Pyrenean%20convergence%2C%20while%20apatite%20%28U%5Cu2010Th%29%5C%2FHe%20dating%20completes%20the%20record%20of%20plate%20collision.%20Using%20inverse%20and%20forward%20modeling%20of%20new%20low%5Cu2010temperature%20thermochronology%20data%2C%20we%20show%20that%20the%20Pyrenean%20retrowedge%20records%20two%20clear%20phases%20of%20orogenic%20cooling%2C%20Late%20Campanian%5Cu2013Maastrichtian%20and%20Ypresian%5Cu2013Bartonian%2C%20which%20we%20relate%20to%20early%20inversion%20of%20the%20distal%20rifted%20margin%20and%20main%20collision%2C%20respectively.%20An%20earlier%2C%20late%20Aptian%5Cu2013Turonian%20cooling%20history%20is%20detected%2C%20possibly%20related%20to%20rifting%20and%5C%2For%20postrift.%20No%20cooling%20is%20evidenced%20during%20the%20Paleocene%20during%20which%20tectonic%20quiescence%20is%20recorded%20in%20the%20adjacent%20Aquitaine%20retroforeland%20basin.%20Using%20our%20low%5Cu2010temperature%20thermochronology%20data%20and%20geological%20constraints%2C%20we%20propose%20a%20crustal%5Cu2010scale%20sequentially%20restored%20model%20for%20the%20tectonic%20and%20thermal%20transition%20from%20extension%20to%20peak%20orogenesis%20in%20the%20eastern%20Pyrenees%2C%20which%20suggests%20that%20both%20thrusting%20and%20underplating%20processes%20contributed%20to%20early%20inversion%20of%20the%20Aptian%5Cu2013Cenomanian%20rift%20system.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Zircon%20%28U%5Cu2010Th%29%5C%2FHe%20data%20record%20a%20cooling%20phase%20during%20early%20convergence%20in%20the%20Pyrenean%20low%5Cu2010relief%20retrowedge%20%28Agly%5Cu2010Salvezines%20block%29%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Forward%20and%20inverse%20thermal%20history%20modeling%20reveals%20limitations%20in%20current%20radiation%20damage%5Cu2010annealing%20models%20for%20He%20diffusion%20in%20zircon%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Crustal%20section%20sequential%20restoration%20demonstrates%20that%20tectonic%20processes%20alone%20can%20generate%20rapid%20cooling%20during%20early%20orogenesis%22%2C%22date%22%3A%2204%5C%2F2019%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2018TC005254%22%2C%22ISSN%22%3A%220278-7407%2C%201944-9194%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2018TC005254%22%2C%22collections%22%3A%5B%228MGFHE4Z%22%5D%2C%22dateModified%22%3A%222024-03-14T18%3A15%3A47Z%22%7D%7D%2C%7B%22key%22%3A%22JQFA4Y72%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Thomson%20et%20al.%22%2C%22parsedDate%22%3A%222019%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EThomson%2C%20K.%20D.%2C%20Stockli%2C%20D.%20F.%2C%20%3Cstrong%3EOdlum%2C%20M.%20L.%3C%5C%2Fstrong%3E%2C%20Tolentino%2C%20P.%2C%20Puigdef%26%23xE0%3Bbregas%2C%20C.%2C%20Clark%2C%20J.%2C%20%26amp%3B%20Fildani%2C%20A.%20%282019%29.%20Sediment%20provenance%20and%20routing%20evolution%20in%20the%20Late%20Cretaceous%26%23x2013%3BEocene%20Ager%20Basin%2C%20south%26%23x2010%3Bcentral%20Pyrenees%2C%20Spain.%20%3Ci%3EBasin%20Research%3C%5C%2Fi%3E%2C%20%3Ci%3E32%3C%5C%2Fi%3E%283%29%2C%20485%26%23x2013%3B504.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1111%5C%2Fbre.12376%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1111%5C%2Fbre.12376%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Sediment%20provenance%20and%20routing%20evolution%20in%20the%20Late%20Cretaceous%5Cu2013Eocene%20Ager%20Basin%2C%20south%5Cu2010central%20Pyrenees%2C%20Spain%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kelly%20D.%22%2C%22lastName%22%3A%22Thomson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%20F.%22%2C%22lastName%22%3A%22Stockli%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Margaret%20L.%22%2C%22lastName%22%3A%22Odlum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pauline%22%2C%22lastName%22%3A%22Tolentino%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Cai%22%2C%22lastName%22%3A%22Puigdef%5Cu00e0bregas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julian%22%2C%22lastName%22%3A%22Clark%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrea%22%2C%22lastName%22%3A%22Fildani%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20This%20study%20constrains%20the%20sediment%20provenance%20for%20the%20Late%20Cretaceous%5Cu2013Eocene%20strata%20of%20the%20Ager%20Basin%2C%20Spain%2C%20and%20reconstructs%20the%20interplay%20between%20foreland%20basin%20subsidence%20and%20sediment%20routing%20within%20the%20south%5Cu2010central%20Pyrenean%20foreland%20basin%20during%20the%20early%20phases%20of%20crustal%20shortening%20using%20detrital%20zircon%20%28DZ%29%20U%5Cu2010Pb%5Cu2010He%20double%20dating.%20Here%20we%20present%20and%20interpret%20837%20new%20DZ%20U%5Cu2010Pb%20ages%2C%20113%20of%20which%20are%20new%20DZ%20%28U%5Cu2010Th%29%5C%2FHe%20double%5Cu2010dated%20zircons.%20U%5Cu2010Pb%5Cu2010He%20double%20dating%20results%20allow%20for%20a%20clear%20differentiation%20between%20different%20foreland%20and%20hinterland%20sources%20of%20Variscan%20zircons%20%28280%5Cu2013350%5Cu00a0Ma%29%20by%20leveraging%20the%20contrasting%20thermal%20histories%20of%20the%20Ebro%20Massif%20and%20Pyrenean%20orogen%2C%20recorded%20by%20the%20zircon%20%28U%5Cu2010Th%29%5C%2FHe%20%28ZHe%29%20ages%2C%20despite%20their%20indistinguishable%20U%5Cu2010Pb%20age%20signatures.%20Cretaceous%5Cu2013Paleocene%20sedimentary%20rocks%2C%20dominated%20by%20Variscan%20DZ%20U%5Cu2010Pb%20age%20components%20with%20Permian%5Cu2013Triassic%20%28200%5Cu2013300%5Cu00a0Ma%29%20ZHe%20cooling%20ages%2C%20were%20sourced%20from%20the%20Ebro%20Massif%20south%20of%20the%20Ager%20Basin.%20A%20provenance%20shift%20occurred%20at%20the%20base%20of%20the%20Early%20Eocene%20Baronia%20Formation%20%28ca.%2053%5Cu00a0Ma%29%20to%20an%20eastern%20Pyrenean%20source%20%28north%5Cu2010east%20of%20the%20Ager%20Basin%29%20as%20evidenced%20by%20an%20abrupt%20change%20in%20paleocurrents%2C%20a%20change%20in%20DZ%20U%5Cu2010Pb%20signatures%20to%20age%20distributions%20dominated%20by%20Cambro%5Cu2010Silurian%20%28420%5Cu2013520%5Cu00a0Ma%29%2C%20Cadomian%20%28520%5Cu2013700%5Cu00a0Ma%29%2C%20and%20Proterozoic%5Cu2013Archean%20%28%3E700%5Cu00a0Ma%29%20age%20components%2C%20and%20the%20prominent%20emergence%20of%20Cretaceous%5Cu2013Paleogene%20%28%3C90%5Cu00a0Ma%29%20ZHe%20cooling%20ages.%20The%20Eocene%20Cor%5Cu00e7%5Cu00e0%20Formation%20%28ca.%2050%5Cu00a0Ma%29%2C%20characterized%20by%20the%20arrival%20of%20fully%20reset%20ZHe%20ages%20with%20very%20short%20lag%20times%2C%20signals%20the%20accumulation%20of%20sediment%20derived%20from%20the%20rapidly%20exhuming%20Pyrenean%20thrust%20sheets.%20While%20ZHe%20ages%20from%20the%20Cor%5Cu00e7%5Cu00e0%20Formation%20are%20fully%20reset%2C%20zircon%20fission%20track%20%28ZFT%29%20ages%20preserve%20older%20inherited%20cooling%20ages%2C%20bracketing%20the%20exhumation%20level%20within%20the%20thrust%20sheets%20to%20ca.%206%5Cu20138%5Cu00a0km%20in%20the%20Early%20Eocene.%20These%20DZ%20ZHe%20ages%20yield%20exhumation%20rate%20estimates%20of%20ca.%200.03%5Cu00a0km%5C%2FMyr%20during%20the%20Late%20Cretaceous%5Cu2013Paleocene%20for%20the%20Ebro%20Massif%20and%20ca.%200.2%5Cu20130.4%5Cu00a0km%5C%2FMyr%20during%20the%20Eocene%20for%20the%20eastern%20Pyrenees.%22%2C%22date%22%3A%222019%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1111%5C%2Fbre.12376%22%2C%22ISSN%22%3A%220950-091X%2C%201365-2117%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1111%5C%2Fbre.12376%22%2C%22collections%22%3A%5B%228MGFHE4Z%22%5D%2C%22dateModified%22%3A%222024-03-14T18%3A59%3A27Z%22%7D%7D%2C%7B%22key%22%3A%22VYWMBGJE%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Capaldi%20et%20al.%22%2C%22parsedDate%22%3A%222017-12-01%22%2C%22numChildren%22%3A2%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ECapaldi%2C%20T.%20N.%2C%20Horton%2C%20B.%20K.%2C%20McKenzie%2C%20N.%20R.%2C%20Stockli%2C%20D.%20F.%2C%20%26amp%3B%20Odium%2C%20M.%20L.%20%282017%29.%20Sediment%20provenance%20in%20contractional%20orogens%3A%20The%20detrital%20zircon%20record%20from%20modern%20rivers%20in%20the%20Andean%20fold-thrust%20belt%20and%20foreland%20basin%20of%20western%20Argentina.%20%3Ci%3EEarth%20and%20Planetary%20Science%20Letters%3C%5C%2Fi%3E%2C%20%3Ci%3E479%3C%5C%2Fi%3E%2C%2083%26%23x2013%3B97.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.epsl.2017.09.001%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.epsl.2017.09.001%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Sediment%20provenance%20in%20contractional%20orogens%3A%20The%20detrital%20zircon%20record%20from%20modern%20rivers%20in%20the%20Andean%20fold-thrust%20belt%20and%20foreland%20basin%20of%20western%20Argentina%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%20N.%22%2C%22lastName%22%3A%22Capaldi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%20K.%22%2C%22lastName%22%3A%22Horton%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%20R.%22%2C%22lastName%22%3A%22McKenzie%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%20F.%22%2C%22lastName%22%3A%22Stockli%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20L.%22%2C%22lastName%22%3A%22Odium%22%7D%5D%2C%22abstractNote%22%3A%22This%20study%20analyzes%20detrital%20zircon%20U-Pb%20age%20populations%20from%20Andean%20rivers%20to%20assess%20whether%20active%20synorogenic%20sedimentation%20accurately%20records%20proportional%20contributions%20from%20varied%20bedrock%20source%20units%20across%20different%20drainage%20areas.%20Samples%20of%20modern%20river%20sand%20were%20collected%20from%20west-central%20Argentina%20%2828-33%20degrees%20S%29%2C%20where%20the%20Andes%20are%20characterized%20by%20active%20uplift%20and%20deposition%20in%20diverse%20contractional%20provinces%2C%20including%20%281%29%20hinterland%2C%20%282%29%20wedge-top%2C%20%283%29%20proximal%20foreland%2C%20and%20%284%29%20distal%20broken%20foreland%20basin%20settings.%20Potential%20controls%20on%20sediment%20provenance%20were%20evaluated%20by%20comparing%20river%20U-Pb%20age%20distributions%20with%20predicted%20age%20spectra%20generated%20by%20a%20sediment%20mixing%20model%20weighted%20by%20relative%20catchment%20exposure%20%28outcrop%29%20areas%20for%20different%20source%20units.%20Several%20statistical%20measures%20%28similarity%2C%20likeness%2C%20and%20cross-correlation%29%20are%20employed%20to%20compare%20how%20well%20the%20area-weighted%20model%20predicts%20modern%20river%20age%20populations.%20%281%29%20Hinterland%20basin%20provenance%20is%20influenced%20by%20local%20relief%20generated%20along%20thrust-bounded%20ranges%20and%20high%20zircon%20fertility%20of%20exposed%20crystalline%20basement.%20%282%29%20Wedge-top%20%28piggyback%29%20basin%20provenance%20is%20controlled%20by%20variable%20lithologic%20durability%20among%20thrust%20belt%20bedrock%20sources%20and%20recycled%20basin%20sediments.%20%283%29%20Proximal%20foreland%20%28foredeep%29%20basin%20provenance%20of%20rivers%20and%20fluvial%20megafans%20accurately%20reflect%20regional%20bedrock%20distributions%2C%20with%20limited%20effects%20of%20zircon%20fertility%20and%20lithologic%20durability%20in%20large%20%28%3E20%2C000%20km%282%29%29%20second-order%20drainage%20systems.%20%284%29%20In%20distal%20broken%20segments%20of%20the%20foreland%20basin%2C%20regional%20provenance%20signatures%20from%20thrust-belt%20and%20hinterland%20areas%20are%20diluted%20by%20local%20contributions%20from%20foreland%20basement-cored%20uplifts.%20%28C%29%202017%20Elsevier%20B.V.%20All%20rights%20reserved.%22%2C%22date%22%3A%22Dec%201%202017%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.epsl.2017.09.001%22%2C%22ISSN%22%3A%220012-821x%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22BGC9F53I%22%2C%228MGFHE4Z%22%5D%2C%22dateModified%22%3A%222024-04-12T20%3A11%3A54Z%22%7D%7D%5D%7D
Senger, K., Shephard, G., Ammerlaan, F., Anfinson, O., Audet, P., Coakley, B., Ershova, V., Faleide, J. I., Grundvåg, S.-A., Horota, R. K., Iyer, K., Janocha, J., Jones, M., Minakov, A., Odlum, M., Sartell, A., Schaeffer, A., Stockli, D., Vander Kloet, M. A., & Gaina, C. (2024). Arctic Tectonics and Volcanism: a multi-scale, multi-disciplinary educational approach. Geoscience Communication, 7(4), 267–295. https://doi.org/10.5194/gc-7-267-2024
Odlum, M. L., Capaldi, T. N., Thomson, K. D., & Stockli, D. F. (2024). Tracking cycles of Phanerozoic opening and closing of ocean basins using detrital rutile and zircon geochronology and geochemistry. Geology. https://doi.org/10.1130/G51826.1
Zuza, A. V., Cao, W., Levy, D. A., DesOrmeau, J. W., Odlum, M. L., & Siciliano, A. A. (2024). Kinematic vorticity of shear zones that accommodate vertical crustal advection: Implications for metamorphic core complexes and pluton emplacement. Earth and Planetary Science Letters, 646, 118964. https://doi.org/10.1016/j.epsl.2024.118964
Plonka, Z. C., Capaldi, T. N., Odlum, M. L., Mackaman-Lofland, C., Ortiz, G., & Alvarado, P. (2023). Along-strike tectonic evolution of the Neogene Bermejo foreland basin and Eastern Precordillera thrust front, Argentina (30-32°S). Journal of South American Earth Sciences, 129. https://doi.org/10.1016/j.jsames.2023.104521
Capaldi, T. N., Odlum, M. L., Curry, M. E., & Stockli, D. F. (2022). Variable thermal histories across the Pyrenees orogen recorded in modern river sand detrital geo-/thermochronology and PECUBE thermokinematic modelling. Basin Research, 34(5), 1781–1806. https://doi.org/10.1111/bre.12685
Odlum, M. L., Levy, D. A., Stockli, D. F., Stockli, L. D., & DesOrmeau, J. W. (2022). Deformation and metasomatism recorded by single-grain apatite petrochronology. Geology, 50(6), 697–703. https://doi.org/10.1130/G49809.1
Anfinson, O. A., Odlum, M. L., Piepjohn, K., Poulaki, E. M., Shephard, G. E., Stockli, D. F., Levang, D., Jensen, M. A., & Pavlovskaia, E. A. (2022). Provenance Analysis of the Andrée Land Basin and Implications for the Paleogeography of Svalbard in the Devonian. Tectonics, 41(11), e2021TC007103. https://doi.org/10.1029/2021TC007103
Odlum, M. L., Rittenour, T., Ault, A. K., Nelson, M., & Ramos, E. J. (2022). Investigation of quartz luminescence properties in bedrock faults: Fault slip processes reduce trap depths, lifetimes, and sensitivity. Radiation Measurements, 155, 106784. https://doi.org/10.1016/j.radmeas.2022.106784
Taylor, M. P., Ault, A. K., Odlum, M. L., & Newell, D. L. (2021). Shallow Rupture Propagation of Pleistocene Earthquakes Along the Hurricane Fault, UT, Revealed by Hematite (U‐Th)/He Thermochronometry and Textures. Geophysical Research Letters, 48(17), e2021GL094379. https://doi.org/10.1029/2021GL094379
Odlum, M. L., Ault, A. K., Channer, M. A., & Calzolari, G. (2021). Seismicity recorded in hematite fault mirrors in the Rio Grande rift. Geosphere, 18(1), 241–260. https://doi.org/10.1130/GES02426.1
Levy, D. A., Zuza, A. V., Haproff, P. J., & Odlum, M. L. (2020). Early Permian tectonic evolution of the Last Chance thrust system: An example of induced subduction initiation along a plate boundary transform. GSA Bulletin, 133(5–6), 1105–1127. https://doi.org/10.1130/B35752.1
Haproff, P. J., Odlum, M. L., Zuza, A. V., Yin, A., & Stockli, D. F. (2020). Structural and Thermochronologic Constraints on the Cenozoic Tectonic Development of the Northern Indo‐Burma Ranges. Tectonics, 39(9), e2020TC006231. https://doi.org/10.1029/2020TC006231
Odlum, M. L., & Stockli, D. F. (2020). Geochronologic constraints on deformation and metasomatism along an exhumed mylonitic shear zone using apatite U-Pb, geochemistry, and microtextural analysis. Earth and Planetary Science Letters, 538, 116177. https://doi.org/10.1016/j.epsl.2020.116177
Odlum, M. L., Stockli, D. F., Capaldi, T. N., Thomson, K. D., Clark, J., Puigdefábregas, C., & Fildani, A. (2019). Tectonic and sediment provenance evolution of the South Eastern Pyrenean foreland basins during rift margin inversion and orogenic uplift. Tectonophysics, 765, 226–248. https://doi.org/10.1016/j.tecto.2019.05.008
Zuza, A. V., Cao, W., Hinz, N. H., DesOrmeau, J. W., Odlum, M. L., & Stockli, D. F. (2019). Footwall Rotation in a Regional Detachment Fault System: Evidence for Horizontal‐Axis Rotational Flow in the Miocene Searchlight Pluton, NV. Tectonics, 38(7), 2506–2539. https://doi.org/10.1029/2019TC005513
Odlum, M. L., & Stockli, D. F. (2019). Thermotectonic Evolution of the North Pyrenean Agly Massif During Early Cretaceous Hyperextension Using Multi‐mineral U‐Pb Thermochronometry. Tectonics, 38(5), 1509–1531. https://doi.org/10.1029/2018TC005298
Ternois, S., Odlum, M., Ford, M., Pik, R., Stockli, D., Tibari, B., Vacherat, A., & Bernard, V. (2019). Thermochronological Evidence of Early Orogenesis, Eastern Pyrenees, France. Tectonics, 38(4), 1308–1336. https://doi.org/10.1029/2018TC005254
Thomson, K. D., Stockli, D. F., Odlum, M. L., Tolentino, P., Puigdefàbregas, C., Clark, J., & Fildani, A. (2019). Sediment provenance and routing evolution in the Late Cretaceous–Eocene Ager Basin, south‐central Pyrenees, Spain. Basin Research, 32(3), 485–504. https://doi.org/10.1111/bre.12376
Capaldi, T. N., Horton, B. K., McKenzie, N. R., Stockli, D. F., & Odium, M. L. (2017). Sediment provenance in contractional orogens: The detrital zircon record from modern rivers in the Andean fold-thrust belt and foreland basin of western Argentina. Earth and Planetary Science Letters, 479, 83–97. https://doi.org/10.1016/j.epsl.2017.09.001